FANDOM


Aberrations are departures of the performance of an optical system from the predictions of paraxial optics. Aberration leads to blurring of the image produced by an image-forming optical system. It occurs when light from one point of an object after transmission through the system does not converge into (or does not diverge from) a single point. Instrument-makers need to correct optical systems to compensate for aberration. The articles on reflection, refraction and caustics discuss the general features of reflected and refracted rays.

Aberrations fall into two classes: monochromatic and chromatic. Monochromatic aberrations are caused by the geometry of the lens and occur both when light is reflected and when it is refracted. They appear even when using monochromatic light, hence the name.

Chromatic aberrations are caused by dispersion, the variation of a lens's refractive index with wavelength. They do not appear when monochromatic light is used.

Monochromatic aberrations

  • Piston
  • Tilt
  • Defocus
  • Spherical aberration
  • Coma
  • Astigmatism
  • Field curvature
  • Image distortion

Piston and tilt are not actually true optical aberrations, as they do not represent or model curvature in the wavefront. If an otherwise perfect wavefront is "aberrated" by piston and tilt, it will still form a perfect, aberration-free image, only shifted to a different position. Defocus is the lowest-order true optical aberration.

Chromatic aberrations

Main article: Chromatic aberration

  • Axial, or longitudinal, chromatic aberration
  • Lateral, or transverse, chromatic aberration

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.