FANDOM


Capcode

Ceramic Capacitor Chart

About

There are a very, very large variety of different types of capacitor available in the market place and each one has its own set of characteristics and applications from small delicate trimming capacitors up to large power metal-can type capacitors used in high voltage power correction and smoothing circuits. Like resistors, there are also variable types of capacitors which allow us to vary their capacitance value for use in radio or "frequency tuning" type circuits.

Commercial types of capacitor are made from metallic foil interlaced with thin sheets of either paraffin-impregnated paper or Mylar as the dielectric material. Some capacitors look like tubes, this is because the metal foil plates are rolled up into a cylinder to form a small package with the insulating dielectric material sandwiched in between them. Small capacitors are often constructed from ceramic materials and then dipped into an epoxy resin to seal them. Either way, capacitors play an important part in electronic circuits so here are a few of the more "common" types of capacitor available.

Dielectric design

Dielectric Capacitors are usually of the variable type were a continuous variation of capacitance is required for tuning transmitters, receivers and transistor radios. Variable dielectric capacitors are multi-plate air-spaced types that have a set of fixed plates (the stator vanes) and a set of movable plates (the rotor vanes) which move in between the fixed plates. The position of the moving plates with respect to the fixed plates determines the overall capacitance value. The capacitance is generally at maximum when the two sets of plates are fully meshed together. High voltage type tuning capacitors have relatively large spacings or air-gaps between the plates with breakdown voltages reaching many thousands of volts.

Film Design

Film Capacitors are the most commonly available of all types of capacitors, consisting of a relatively large family of capacitors with the difference being in their dielectric properties. These include polyester (Mylar), polystyrene, polypropylene, polycarbonate, metallic paper, Teflon etc. Film type capacitors are available in capacitance ranges from as small as 5pF to as large as 100uF depending upon the actual type of capacitor and its voltage rating. Film capacitors use polystyrene, polycarbonate or Teflon as their dielectrics are sometimes called "Plastic capacitors". The construction of plastic film capacitors is similar to that for paper film capacitors but use a plastic film instead of paper. The main advantage of plastic film capacitors compared to impregnated-paper types is that they operate well under conditions of high temperature, have smaller tolerances, a very long service life and high reliability.

Ceramic design

Ceramic Capacitors or Disc Capacitors as they are generally called, are made by coating two sides of a small porcelain or ceramic disc with silver and are then stacked together to make a capacitor. For very low capacitance values a single ceramic disc of about 3-6mm is used. Ceramic capacitors have a high dielectric constant (High-K) and are available so that relatively high capacitance can be obtained in a small physical size. They exhibit large non-linear changes in capacitance against temperature and as a result are used as de-coupling or by-pass capacitors as they are also non-polarized devices. Ceramic capacitors have values ranging from a few picofarads to one or two micro-farads but their voltage ratings are generally quite low.

Ceramic types of capacitors generally have a 3-digit code printed onto their body to identify their capacitance value in pico-farads. Generally the first two digits indicate the capacitors value and the third digit indicates the number of zero's to be added. For example, a ceramic disc capacitor with the markings 103 would indicate 10 and 3 zero's in pico-farads which is equivalent to 10,000 pF or 10nF. Likewise, the digits 104 would indicate 10 and 4 zero's in pico-farads which is equivalent to 100,000 pF or 100nF and so on. Then on the image of a ceramic capacitor above the numbers 154 indicate 15 and 4 zero's in pico-farads which is equivalent to 150,000 pF or 150nF. Letter codes are sometimes used to indicate their tolerance value such as: J = 5%, K = 10% or M = 20% etc.

Electrolytic design

Electrolytic Capacitors are generally used when very large capacitance values are required. Here instead of using a very thin metallic film layer for one of the electrodes, a semi-liquid electrolyte solution in the form of a jelly or paste is used which serves as the second electrode (usually the cathode). The dielectric is a very thin layer of oxide which is grown electro-chemically in production with the thickness of the film being less than ten microns. This insulating layer is so thin that it is possible to make capacitors with a large value of capacitance for a small physical size as the distance between the plates, d is very small. Electrolytic Capacitor Electrolytic Capacitor

The majority of electrolytic types of capacitors are Polarized, that is the DC voltage applied to the capacitor terminals must be of the correct polarity, i.e. positive to the positive terminal and negative to the negative terminal as an incorrect polarization will break down the insulating oxide layer and permanent damage may result. All polarized electrolytic capacitors have their polarity clearly marked with a negative sign to indicate the negative terminal and this polarity must be followed.

Electrolytic Capacitors are generally used in DC power supply circuits due to their large capacitance and small size to help reduce the ripple voltage or for coupling and decoupling applications. One main disadvantage of electrolytic capacitors is their relatively low voltage rating and due to the polarization of electrolytic capacitors, it follows then that they must not be used on AC supplies. Electrolytic generally come in two basic forms; Aluminum Electrolytic Capacitors and Tantalum Electrolytic Capacitors. [1]


References

  1. Storr, Wayne., Types of Capacitor. May 2011. [1]


Links

See also

Video

thumb|300px|right|MAKE presents: The Capacitor

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.