FANDOM


100avr

Auto Voltage Regulator

About

A voltage regulator is an electrical regulator designed to automatically maintain a constant voltage level.

It may use an electromechanical mechanism, or passive or active electronic components. Depending on the design, it may be used to regulate one or more AC or DC voltages.

With the exception of passive shunt regulators, all modern electronic voltage regulators operate by comparing the actual output voltage to some internal fixed reference voltage. Any difference is amplified and used to control the regulation element in such a way as to reduce the voltage error. This forms a negative feedback servo control loop; increasing the open-loop gain tends to increase regulation accuracy but reduce stability (avoidance of oscillation, or ringing during step changes). There will also be a trade-off between stability and the speed of the response to changes. If the output voltage is too low (perhaps due to input voltage reducing or load current increasing), the regulation element is commanded, up to a point, to produce a higher output voltage - by dropping less of the input voltage (for linear series regulators and buck switching regulators), or to draw input current for longer periods (boost-type switching regulators); if the output voltage is too high, the regulation element will normally be commanded to produce a lower voltage. However, many regulators have over-current protection, so entirely stop sourcing current (or limit the current in some way) if the output current is too high, and some regulators may also shut down if the input voltage is outside a given range

SCR regulators

Silicon Controlled Rectifiers (SCR) Regulators powered from AC power circuits can use SCRs as the series device. Whenever the output voltage is below the desired value, the SCR is triggered, allowing electricity to flow into the load until the AC mains voltage passes through zero (ending the half cycle). SCR regulators have the advantages of being both very efficient and very simple, but because they can not terminate an on-going half cycle of conduction, they are not capable of very accurate voltage regulation in response to rapidly-changing loads.

References


Links

Video

thumb|300px|right

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.